iOS weak原理源码探究

时间:2021-7-4 作者:qvyue
  • 弱引用时干了什么,如下代码来看看
int main(int argc, const char * argv[]) {
    @autoreleasepool {
        NSObject *obj = [[NSObject alloc]init];
        __weak NSObject *weakObj = obj;
    }
    return 0;
}
  • 通过clang来看看cpp代码
int main(int argc, const char * argv[]) {
    /* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool; 

        NSLog((NSString *)&__NSConstantStringImpl__var_folders_5c_vc7szrdj0xj63p71bn1fz8n80000gn_T_main_32a486_mi_0);
        NSObject *obj = ((NSObject *(*)(id, SEL))(void *)objc_msgSend)((id)((NSObject *(*)(id, SEL))(void *)objc_msgSend)((id)objc_getClass("NSObject"), sel_registerName("alloc")), sel_registerName("init"));
        __attribute__((objc_ownership(weak))) NSObject *weakObj = obj;
    }
    return 0;
}
  • 可以看出是通过objc_ownership来实现,但是这样也没法追踪下去了
    那么转换成.ll中间文件来看看
define i32 @main(i32 %0, i8** %1) #1 {
  %3 = alloca i32, align 4
  %4 = alloca i32, align 4
  %5 = alloca i8**, align 8
  %6 = alloca %0*, align 8
  %7 = alloca %0*, align 8
  store i32 0, i32* %3, align 4
  store i32 %0, i32* %4, align 4
  store i8** %1, i8*** %5, align 8
  %8 = call i8* @llvm.objc.autoreleasePoolPush() #2
  notail call void (i8*, ...) @NSLog(i8* bitcast (%struct.__NSConstantString_tag* @_unnamed_cfstring_ to i8*))
  %9 = load %struct._class_t*, %struct._class_t** @"OBJC_CLASSLIST_REFERENCES_$_", align 8
  %10 = bitcast %struct._class_t* %9 to i8*
  %11 = call i8* @objc_alloc_init(i8* %10)
  %12 = bitcast i8* %11 to %0*
  store %0* %12, %0** %6, align 8
  %13 = load %0*, %0** %6, align 8
  %14 = bitcast %0** %7 to i8**
  %15 = bitcast %0* %13 to i8*
  %16 = call i8* @llvm.objc.initWeak(i8** %14, i8* %15) #2
  %17 = bitcast %0** %7 to i8**
  call void @llvm.objc.destroyWeak(i8** %17) #2
  %18 = bitcast %0** %6 to i8**
  call void @llvm.objc.storeStrong(i8** %18, i8* null) #2
  call void @llvm.objc.autoreleasePoolPop(i8* %8)
  ret i32 0
}
  • 可以看到%16 = call i8* @llvm.objc.initWeak(i8** %14, i8* %15) #2,是调用了objcinitWeak方法,那么就去objc的源码里捋这个方法就行了,下面基本都是在源码里注释探索。

objc_initWeak

id
objc_initWeak(id *location, id newObj)
{
    if (!newObj) {
        *location = nil;
        return nil;
    }

    return storeWeak
        (location, (objc_object*)newObj);
}
  • id *location:注释上能看出,即__weak指针的地址,如文章开头例子中的weakObj的地址

  • id newObj:引用的对象,即文章开头例子中的obj

  • 而后returnstoreWeak方法,这个就是核心实现了

storeWeak

enum HaveOld { DontHaveOld = false, DoHaveOld = true };
enum HaveNew { DontHaveNew = false, DoHaveNew = true };
enum CrashIfDeallocating {
    DontCrashIfDeallocating = false, DoCrashIfDeallocating = true
};
template 
static id 
storeWeak(id *location, objc_object *newObj)
{
    ASSERT(haveOld  ||  haveNew);
    if (!haveNew) ASSERT(newObj == nil);

    Class previouslyInitializedClass = nil;
    id oldObj;
    SideTable *oldTable;
    SideTable *newTable;

 retry:
    if (haveOld) {///如果weak ptr之前弱引用过一个obj,则将这个obj所对应的SideTable取出,赋值给oldTable
        oldObj = *location;
        oldTable = &SideTables()[oldObj];
    } else {
        oldTable = nil;/// 如果weak ptr之前没有弱引用过一个obj,则oldTable = nil
    }
    if (haveNew) {/// 如果weak ptr要weak引用一个新的obj,则将该obj对应的SideTable取出,赋值给newTable
        newTable = &SideTables()[newObj];
    } else {
        newTable = nil;/// 如果weak ptr不需要引用一个新obj,则newTable = nil
    }
    /// 加锁
    SideTable::lockTwo(oldTable, newTable);

    /// location 应该与 oldObj 保持一致,如果不同,说明当前的 location 已经处理过 oldObj 可是又被其他线程所修改
    if (haveOld  &&  *location != oldObj) {
        SideTable::unlockTwo(oldTable, newTable);
        goto retry;
    }

    if (haveNew  &&  newObj) {
        Class cls = newObj->getIsa();
        if (cls != previouslyInitializedClass  &&  
            !((objc_class *)cls)->isInitialized()) 
        {/// 如果cls还没有初始化,先初始化,再尝试设置weak
            SideTable::unlockTwo(oldTable, newTable);
            class_initialize(cls, (id)newObj);

            previouslyInitializedClass = cls;

            goto retry;/// 重新获取一遍newObj,这时的newObj应该已经初始化过了
        }
    }

    // Clean up old value, if any.
    if (haveOld) {
        // 如果weak_ptr之前弱引用过别的对象oldObj,则调用weak_unregister_no_lock,在oldObj的weak_entry_t中移除该weak_ptr地址
        weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
    }

    // Assign new value, if any.
    if (haveNew) {// 如果weak_ptr需要弱引用新的对象newObj
        // 1. 调用weak_register_no_lock方法,将weak ptr的地址记录到newObj对应的weak_entry_t中
        newObj = (objc_object *)
            weak_register_no_lock(&newTable->weak_table, (id)newObj, location, 
                                  crashIfDeallocating);
        // 2. 更新newObj的isa的weakly_referenced bit标志位
        if (newObj  &&  !newObj->isTaggedPointer()) {
            newObj->setWeaklyReferenced_nolock();
        }

        // 3. *location 赋值,也就是将weak ptr直接指向了newObj。可以看到,这里并没有将newObj的引用计数+1
        *location = (id)newObj;// 将weak ptr指向object
    }
    else {
        // No new value. The storage is not changed.
    }
    // 解锁
    SideTable::unlockTwo(oldTable, newTable);

    return (id)newObj;// 返回newObj
}
  • storeWeak方法接受5个参数,其中HaveOld haveOld, HaveNew haveNew, CrashIfDeallocating crashIfDeallocating 3个枚举分别传入的是false,true,true,分别表示:weak ptr之前是否已经指向了一个弱引用,weak ptr是否需要指向一个新引用, 如果被弱引用的对象正在析构,此时再弱引用该对象,是否应该crash
  • 结合上述代码注释应该大致能捋清楚storeWeak干了啥

这里主要涉及到2个函数(weak_unregister_no_lock和weak_register_no_lock)以及SideTable数据结构

我们具体来看看

SideTable

struct SideTable {
    spinlock_t slock;/// 自旋锁
    RefcountMap refcnts;/// 存储对象引用计数的map
    weak_table_t weak_table;/// 存储对象弱引用的map

    SideTable() {
        memset(&weak_table, 0, sizeof(weak_table));
    }

    ~SideTable() {
        _objc_fatal("Do not delete SideTable.");
    }
};
  • SideTable存储着对象的引用计数以及weak引用,而一个个的SideTable又构成了一个集合,叫SideTablesSideTables在系统中是全局唯一的。
  • newTable = &SideTables()[newObj] 可以看到通过对象获取到其SideTable,而其内部是通过StripedMap对应的算法获取的,参数是对象地址。
class StripedMap {
    static unsigned int indexForPointer(const void *p) {
        uintptr_t addr = reinterpret_cast(p);
        return ((addr >> 4) ^ (addr >> 9)) % StripeCount;
    }
}
RefcountMap
struct RefcountMapValuePurgeable {
    static inline bool isPurgeable(size_t x) {
        return x == 0;
    }
};
typedef objc::DenseMap,size_t,RefcountMapValuePurgeable> RefcountMap;
  • 可以简单理解为一个mapkeyDisguisedPtr类型,valuesize_t类型,还多了一个
    RefcountMapValuePurgeable:是否可清除数据,内部通过判断引用计数为0
weak_table_t
struct weak_table_t {
    weak_entry_t *weak_entries;/// 存储弱引用对象的相关信息
    size_t    num_entries;/// 元素个数
    uintptr_t mask; /// hash数组长度-1,用于和hash值做位与计算,来确定数组下标(hash数组的长度,而不是元素个数。比如,数组长度可能是64,而元素个数仅存了2个)
    uintptr_t max_hash_displacement;/// 可能会发生的hash冲突的最大次数
};

struct weak_entry_t {
    DisguisedPtr referent;// 被弱引用的对象
    
    // 引用该对象的对象列表,联合
    union {
        struct {/// 引用个数大于4
            weak_referrer_t *referrers;// 弱引用该对象的对象列表的动态数组
            uintptr_t        out_of_line_ness : 2;// 是否使用动态数组标记位
            uintptr_t        num_refs : PTR_MINUS_2;// 动态数组中元素的个数
            uintptr_t        mask;       // 用于hash确定动态数组index
            uintptr_t        max_hash_displacement;// 最大的hash冲突次数
        };
        struct {/// 引用个数小于4
            // out_of_line_ness field is low bits of inline_referrers[1]
            weak_referrer_t  inline_referrers[WEAK_INLINE_COUNT];
        };
    };

    bool out_of_line() {
        return (out_of_line_ness == REFERRERS_OUT_OF_LINE);
    }

    weak_entry_t& operator=(const weak_entry_t& other) {
        memcpy(this, &other, sizeof(other));
        return *this;
    }

    weak_entry_t(objc_object *newReferent, objc_object **newReferrer)
        : referent(newReferent)
    {
        inline_referrers[0] = newReferrer;
        for (int i = 1; i 
  • weak_entries实质上是一个hash数组,数组中存储weak_entry_t类型的元素

引用计数

  • 看一下OC是如何获取引用计数的
inline uintptr_t 
objc_object::rootRetainCount()
{
        /// tagged pointer,直接返回this ,不需要引用计数的
    if (isTaggedPointer()) return (uintptr_t)this;

    sidetable_lock();
    isa_t bits = LoadExclusive(&isa.bits);
    ClearExclusive(&isa.bits);
    /// 采用了优化的isa指针
    if (bits.nonpointer) {
            /// 先读取isa.extra_rc
        uintptr_t rc = 1 + bits.extra_rc;
        if (bits.has_sidetable_rc) {///如果extra_rc不够大, 还需要读取sidetable中的数据
            rc += sidetable_getExtraRC_nolock();
        }
        sidetable_unlock();
        return rc;
    }
    sidetable_unlock();
    /// 未采用了优化的isa指针,直接返回sidetable中的数据
    return sidetable_retainCount();
}

weak_register_no_lock

  • weak ptr地址 注册到obj对应的weak_entry_t
weak_register_no_lock(&newTable->weak_table, (id)newObj, location, 
                                  crashIfDeallocating);

id 
weak_register_no_lock(weak_table_t *weak_table, id referent_id, 
                      id *referrer_id, bool crashIfDeallocating)
{
    objc_object *referent = (objc_object *)referent_id;
    objc_object **referrer = (objc_object **)referrer_id;
    ///referent为nil 或 referent 采用了TaggedPointer计数方式,直接返回
    if (!referent  ||  referent->isTaggedPointer()) return referent_id;

    /// 确保被引用的对象可用
    bool deallocating;
    if (!referent->ISA()->hasCustomRR()) {
        deallocating = referent->rootIsDeallocating();
    }
    else {
        BOOL (*allowsWeakReference)(objc_object *, SEL) = 
            (BOOL(*)(objc_object *, SEL))
            object_getMethodImplementation((id)referent, 
                                           @selector(allowsWeakReference));
        if ((IMP)allowsWeakReference == _objc_msgForward) {
            return nil;
        }
        deallocating =
            ! (*allowsWeakReference)(referent, @selector(allowsWeakReference));
    }
    /// 正在析构的对象,不能够被弱引用
    if (deallocating) {
        if (crashIfDeallocating) {
            _objc_fatal("Cannot form weak reference to instance (%p) of "
                        "class %s. It is possible that this object was "
                        "over-released, or is in the process of deallocation.",
                        (void*)referent, object_getClassName((id)referent));
        } else {
            return nil;
        }
    }

    // now remember it and where it is being stored
    weak_entry_t *entry;
    ///在 weak_table中通过referent找对应的weak_entry
    if ((entry = weak_entry_for_referent(weak_table, referent))) {/// 找到了
        /// 将referrer插入到weak_entry_t的引用数组中
        append_referrer(entry, referrer);
    } 
    else {/// 没找到
        /// 新建一个
        weak_entry_t new_entry(referent, referrer);
        weak_grow_maybe(weak_table);///是否需要动态扩容
        weak_entry_insert(weak_table, &new_entry);///将weak_entry_t插入到weak_table中
    }

    // Do not set *referrer. objc_storeWeak() requires that the 
    // value not change.

    return referent_id;
}
weak_entry_for_referent
static weak_entry_t *
weak_entry_for_referent(weak_table_t *weak_table, objc_object *referent)
{
    ASSERT(referent);

    weak_entry_t *weak_entries = weak_table->weak_entries;

    if (!weak_entries) return nil;
        /// 通过referent进行hash算法  ,将hash值和mask进行位与运算,得到初始数组下标
    size_t begin = hash_pointer(referent) & weak_table->mask;
    size_t index = begin;
    size_t hash_displacement = 0;
    ///通过index拿到的referent与上面的referent不相同
    while (weak_table->weak_entries[index].referent != referent) {
        index = (index+1) & weak_table->mask; /// index+1 ,找下一个位置,基于二进制运算,当寻找到最后一个位置时,它又会自动让你从数组的第一个位置开始寻找
        /// 在数组中转了一圈还没找到目标元素  触发bad_weak_table crash
        if (index == begin) bad_weak_table(weak_table->weak_entries);
        hash_displacement++;
        if (hash_displacement > weak_table->max_hash_displacement) {
          /// hash冲突大于了最大可能的冲突次数,说明目标对象不存在于数组中,返回nil
            return nil;
        }
    }
    
    return &weak_table->weak_entries[index];
}
append_referrer
static void append_referrer(weak_entry_t *entry, objc_object **new_referrer)
{
    if (! entry->out_of_line()) {/// 未使用动态数组
        // Try to insert inline.
        for (size_t i = 0; i inline_referrers[i] == nil) {
                entry->inline_referrers[i] = new_referrer;
                return;
            }
        }

        // Couldn't insert inline. Allocate out of line.
        ///inline_referrers存满了,转为动态数组
        weak_referrer_t *new_referrers = (weak_referrer_t *)
            calloc(WEAK_INLINE_COUNT, sizeof(weak_referrer_t));
        // This constructed table is invalid, but grow_refs_and_insert
        // will fix it and rehash it.
        for (size_t i = 0; i inline_referrers[i];
        }
        entry->referrers = new_referrers;
        entry->num_refs = WEAK_INLINE_COUNT;
        entry->out_of_line_ness = REFERRERS_OUT_OF_LINE;
        entry->mask = WEAK_INLINE_COUNT-1;
        entry->max_hash_displacement = 0;
    }
        /// 断言: 此时使用的动态数组   
    ASSERT(entry->out_of_line());
        /// 如果动态数组中元素个数大于或等于数组位置总空间的3/4
    if (entry->num_refs >= TABLE_SIZE(entry) * 3/4) {
        ///扩展数组空间为当前长度的一倍 size_t new_size = old_size ? old_size * 2 : 8;
        return grow_refs_and_insert(entry, new_referrer);
    }
    // 不需要扩容,直接插入到weak_entry中 ,这里的hash算法与weak_entry_for_referent里的一样
    size_t begin = w_hash_pointer(new_referrer) & (entry->mask);
    size_t index = begin;
    size_t hash_displacement = 0;
    while (entry->referrers[index] != nil) {
        hash_displacement++;
        index = (index+1) & entry->mask;
        if (index == begin) bad_weak_table(entry);
    }
    if (hash_displacement > entry->max_hash_displacement) {
        entry->max_hash_displacement = hash_displacement;
    }
    /// 将new_referrer存入hash数组,并更新元素个数num_refs
    weak_referrer_t &ref = entry->referrers[index];
    ref = new_referrer;
    entry->num_refs++;
}
weak_grow_maybe
static void weak_grow_maybe(weak_table_t *weak_table)
{
    size_t old_size = TABLE_SIZE(weak_table);

    // Grow if at least 3/4 full.
    /// 当大于现有长度的3/4时,进行扩容。
    if (weak_table->num_entries >= old_size * 3 / 4) {
        weak_resize(weak_table, old_size ? old_size*2 : 64);
    }
}

static void weak_resize(weak_table_t *weak_table, size_t new_size)
{
    size_t old_size = TABLE_SIZE(weak_table);

    weak_entry_t *old_entries = weak_table->weak_entries; /// 老数据
    weak_entry_t *new_entries = (weak_entry_t *)
        calloc(new_size, sizeof(weak_entry_t));/// 新数据申请内存

    /// 重置weak_table数据
    weak_table->mask = new_size - 1;
    weak_table->weak_entries = new_entries;
    weak_table->max_hash_displacement = 0;
    weak_table->num_entries = 0;  // restored by weak_entry_insert below
    
    if (old_entries) {
        weak_entry_t *entry;
        weak_entry_t *end = old_entries + old_size;
        for (entry = old_entries; entry referent) {// 依次将老的数据插入到新的内存空间
                weak_entry_insert(weak_table, entry);
            }
        }
        free(old_entries);
    }
}
weak_entry_insert
/// 插入entry进entries里
static void weak_entry_insert(weak_table_t *weak_table, weak_entry_t *new_entry)
{
    weak_entry_t *weak_entries = weak_table->weak_entries;
    ASSERT(weak_entries != nil);

    size_t begin = hash_pointer(new_entry->referent) & (weak_table->mask);
    size_t index = begin;
    size_t hash_displacement = 0;
    while (weak_entries[index].referent != nil) {
        index = (index+1) & weak_table->mask;
        if (index == begin) bad_weak_table(weak_entries);
        hash_displacement++;
    }

    weak_entries[index] = *new_entry;
    weak_table->num_entries++;

    if (hash_displacement > weak_table->max_hash_displacement) {
        weak_table->max_hash_displacement = hash_displacement;
    }
}

weak_unregister_no_lock

  • 如果weak_ptr之前弱引用过别的对象oldObj,则调用weak_unregister_no_lock,在oldObjweak_entry_t中移除该weak_ptr地址
void
weak_unregister_no_lock(weak_table_t *weak_table, id referent_id, 
                        id *referrer_id)
{
    objc_object *referent = (objc_object *)referent_id;
    objc_object **referrer = (objc_object **)referrer_id;

    weak_entry_t *entry;

    if (!referent) return;

    if ((entry = weak_entry_for_referent(weak_table, referent))) {///找到referent所对应的weak_entry_t
        remove_referrer(entry, referrer);///移除referrer
        /// 检查weak_entry_t的hash数组是否已经空了
        bool empty = true;
        if (entry->out_of_line()  &&  entry->num_refs != 0) {
            empty = false;
        }
        else {
            for (size_t i = 0; i inline_referrers[i]) {
                    empty = false; 
                    break;
                }
            }
        }

        if (empty) {///空了,将weak_entry_t从weak_table中移除
            weak_entry_remove(weak_table, entry);
        }
    }
}

static void weak_entry_remove(weak_table_t *weak_table, weak_entry_t *entry)
{
    // remove entry
    if (entry->out_of_line()) free(entry->referrers);
    bzero(entry, sizeof(*entry));

    weak_table->num_entries--;

    weak_compact_maybe(weak_table);
}

static void weak_compact_maybe(weak_table_t *weak_table)
{
    size_t old_size = TABLE_SIZE(weak_table);

    // Shrink if larger than 1024 buckets and at most 1/16 full.
    /// 当前数组长度大于1024,且实际使用空间最多只有1/16时
    if (old_size >= 1024  && old_size / 16 >= weak_table->num_entries) {
        weak_resize(weak_table, old_size / 8);/// 缩小8倍
        // leaves new table no more than 1/2 full
    }
}

Dealloc

  • 当对象释放的时候,weak引用的释放。
inline void
objc_object::rootDealloc()
{
    if (isTaggedPointer()) return;  // fixme necessary?

    if (fastpath(isa.nonpointer  &&  ///是否isa优化
                 !isa.weakly_referenced  &&  ///是否弱引用
                 !isa.has_assoc  &&  /// 是否有关联对象
                 !isa.has_cxx_dtor  &&  ///是否自定义c++析构
                 !isa.has_sidetable_rc))/// 是否用到sidetable
    {
        assert(!sidetable_present());
        free(this);
    } 
    else {
        object_dispose((id)this);
    }
}
  • 有弱引用的时候,走object_dispose
id 
object_dispose(id obj)
{
    if (!obj) return nil;

    objc_destructInstance(obj);    
    free(obj);

    return nil;
}

void *objc_destructInstance(id obj) 
{
    if (obj) {
        // Read all of the flags at once for performance.
        bool cxx = obj->hasCxxDtor();
        bool assoc = obj->hasAssociatedObjects();

        // This order is important.
        if (cxx) object_cxxDestruct(obj);/// 调用C++析构函数
        if (assoc) _object_remove_assocations(obj);// 关联对象remove相关
        obj->clearDeallocating();// 清理引用
    }

    return obj;
}

inline void 
objc_object::clearDeallocating()
{
    if (slowpath(!isa.nonpointer)) {
        // Slow path for raw pointer isa.
        sidetable_clearDeallocating();
    }
    else if (slowpath(isa.weakly_referenced  ||  isa.has_sidetable_rc)) {
        // Slow path for non-pointer isa with weak refs and/or side table data.
        clearDeallocating_slow();
    }

    assert(!sidetable_present());
}

NEVER_INLINE void
objc_object::clearDeallocating_slow()
{
    ASSERT(isa.nonpointer  &&  (isa.weakly_referenced || isa.has_sidetable_rc));
        ///以this指针为key,找到对应的SideTable
    SideTable& table = SideTables()[this];
    table.lock();
    if (isa.weakly_referenced) {/// 弱引用
        weak_clear_no_lock(&table.weak_table, (id)this);
    }
    if (isa.has_sidetable_rc) {/// 采用了SideTable
        table.refcnts.erase(this);/// SideTable移除this
    }
    table.unlock();
}

weak_clear_no_lock

void 
weak_clear_no_lock(weak_table_t *weak_table, id referent_id) 
{
    objc_object *referent = (objc_object *)referent_id;

    weak_entry_t *entry = weak_entry_for_referent(weak_table, referent);
    if (entry == nil) {
        /// XXX shouldn't happen, but does with mismatched CF/objc
        //printf("XXX no entry for clear deallocating %pn", referent);
        return;
    }

    // zero out references
    weak_referrer_t *referrers;
    size_t count;
    
    if (entry->out_of_line()) {
        referrers = entry->referrers;
        count = TABLE_SIZE(entry);
    } 
    else {
        referrers = entry->inline_referrers;
        count = WEAK_INLINE_COUNT;
    }
    
    for (size_t i = 0; i 

实践看看引用计数和weak引用

  • 现在苹果基本都是采用了isa指针优化的,即isa指针不只是表示class类型,而是一个占用64位的结构体
# if __arm64__
#   define ISA_MASK        0x0000000ffffffff8ULL
#   define ISA_MAGIC_MASK  0x000003f000000001ULL
#   define ISA_MAGIC_VALUE 0x000001a000000001ULL
#   define ISA_BITFIELD                                                      
            ///1 表示开启了isa优化,0 表示没有启用isa优化
      uintptr_t nonpointer        : 1;                                       
      ///对象是否有关联对象
      uintptr_t has_assoc         : 1;                                       
      ///对象是否有C++或ARC析构函数
      uintptr_t has_cxx_dtor      : 1;                                       
      ///类指针的值
      uintptr_t shiftcls          : 33; /*MACH_VM_MAX_ADDRESS 0x1000000000*/ 
      ///固定为0x1a,用于在调试时区分对象是否已经初始化
      uintptr_t magic             : 6;                                       
      ///对象是否被别的对象弱引用
      uintptr_t weakly_referenced : 1;                                       
      ///对象是否正在被释放
      uintptr_t deallocating      : 1;                                       
      ///是否引用计数过大,借用sidetable来存储
      uintptr_t has_sidetable_rc  : 1;                                       
      ///对象的引用计数减1
      uintptr_t extra_rc          : 19
#   define RC_ONE   (1ULL
  • 我这边是在Mac跑的可编译源码,所以对应的是x86_64

  • 首先在NSObject *obj = [[NSObject alloc]init];代码后打上断点,先看看obj的引用计数,很明显引用计数是1,extra_rcisa的后8位,那我们就来看看是不是1

  • 断点后,x/4gx obj打印obj的4段内存,第一段即是isa

iOS weak原理源码探究
x:4gx.png
  • 用编程计算机看二进制位
iOS weak原理源码探究
  • 可以看到extra_rc0000 0000,它的值是引用计数减1,所以引用计数为0+1=1

再new一个obj持有看看

NSObject *obj = [[NSObject alloc]init];
NSObject *obj1 = obj;
iOS weak原理源码探究
x:4gx1.png
iOS weak原理源码探究
extra_rc1.png
  • 可以看到extra_rc变成0000 0001了,引用计数为1+1=2

下面再来验证一下weak引用

NSObject *obj = [[NSObject alloc]init];
__weak NSObject *weakObj = obj;
  • weak不会增加引用计数,那么这里obj引用计数还是1,而且weakly_referenced位应该为1。
iOS weak原理源码探究
x:4gx_weak.png
iOS weak原理源码探究
weakly_referenced.png
  • 可以看出weakly_referenced确实变成1了,而引用计数还是0+1=1,符合预期。

end

声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:qvyue@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。